Research

I research at the intersection of quantum foundations and quantum technologies: using quantum foundations to uncover new phenomena that can be used to develop new quantum technologies, and using quantum technologies to experimentally test models proposed in quantum foundations.

Most quantum technologies were originally based on quantum foundational work. For instance, quantum key distribution was developed from the uncertainty principle and no-cloning theorem, quantum computation (by Deutsch’s own account) was developed from quantum parallelism and interference, and quantum metrology was developed from consideration of quantum measurement and back action, and the leveraging of entanglement and squeezing.

My work contributes to the underpinning science of quantum technologies, showing how quantum foundational ideas can be adapted into quantum technological applications. It also shows quantum technologies can benefit quantum foundations – how these technologies can be utilised to test foundational hypotheses and demonstrate foundational principles. Therefore, this work demonstrates the interplay between quantum foundations and quantum technologies.

Worldwide, there is currently a race to develop useful quantum technologies. The fact that all quantum technologies were initially based on theoretical quantum foundational work illustrates how critically important quantum foundational research is, and why foundational work is necessary if we want to develop truly new quantum technologies (rather than just making short-term minor enhancements to current technologies).

Published Journal Articles; Preprints under Review; Published Conference Abstracts

Read my Thesis here!